Analysis 1 — Wiederholung

G. Pohlenz

Wintersemester 2024 /2025

I. Mengenlehre und Logik

1. Beschreibe die Menge {z € N| 2 <10A (2| 2V 3| x)} extensional.

2. Skizziere die Menge {z € C | |z —2—1| <2V (Jz —2| < |z —4| A |z = 2| < |z])}.

Im(z)

3. Esseien A ={1,5,7,11,13}, B ={1,2,3,4,5}, C = {, A, ¢}. Bestimme
a) AUB



Il. Vollstandige Induktion

1. Es seien a,7 € R, a # 0 und r # 1. Zeige fiir jedes n € N mit n > 1, dass
il

atar+ar®+---+ar" =a——.
r—1

2. Zeige fiir jedes n € N mit n > 1, dass
1-2242.2243.22 4. 4n- 2" =24 (n—1)2"L

3. Zeige fiir jedes n € N mit n > 3, dass

n" > (n+ 1)\

4. Zeige fiir jedes n € N und fiir jedes z,y € R>g, dass gilt

Tty n<a:"+y”
2 - 2 '

5. (Bernoulliungleichung) Es sei x € R\ {0} mit z > —1. Zeige per vollstdndiger
Induktion fiir jedes n € N mit n > 2:

(I+2)" > 1+ nz.

6. Es seien 1 < a3 < ag <--- < a, natiirliche Zahlen. Zeige, dass im Fall

1 1 1
—t — 4+ 4+ — =1
al a9 Ay,

gilt, dass a, < 2"
7. Zeige fiir beliebige natiirliche Zahlen m,n € N, dass

ZZ@‘"ﬂZ mn(m—2|—7z+2)'

i=1 j=1

kleiner Hinweis: Fiihre eine doppelte Induktion durch.

grofler Hinweis: Es sei S(m,n) die zu zeigende Aussage fiir gewisse m,n € N.
Zeige, dass S(1,1) gilt. Zeige dann mit vollstdndiger Induktion, dass S(m,1) fiir
alle m € N gilt. Nutze dann fiir festes my € N die nun gezeigte Aussage S(my, 1)
als Induktionsanfang fiir eine vollstandige Induktion iiber n, zeige also S(mg,n) ~
S (mo, n -+ 1).

8. () Zeige, dass die Gleichung z* + y* = 22 keine Losung (x,y, z) € N hat.

Hinweis: Fiihre die Annahme, es gebe eine in z minimale Lésung, zum Widerspruch.



I1l. Komplexe Zahlen

Es seien z,w € C.
1. Zeige |zw| = |z| - Jw.

2. Zeige zw =Z-w

3. Zeige z e R <— z=72.

4. Zeige Re(z) = Z£2.

5. Zeige Im(z) =

7. Bestimme Re (%)

8. Bestimme alle Losungen von 2z 4+ 423 — 422 4+ 4z = 5 in den komplexen Zahlen.

IV. Metrische Raume
1. Es sei (X, d) ein metrischer Raum. Zeige, dass fiir alle x,y, z € X gilt:
|d(z,y) — d(z, 2)| < d(y, 2).
2. Es sei (X, d) ein metrischer Raum und d die diskrete Metrik, d. h.

L, z#y

d: X x X — R;(z,y) — .
0, z=y
Es sei f: X — X eine Funktion. Zeige, dass f Lipschitz-stetig ist.

3. Essei (X, d) ein metrischer Raum und A C X eine nicht-leere Menge. Wir definieren
fiir z € X den Abstand von x zu A mittels

d(z,A) .= inf{d(z,a) | a € A}.
Zeige:
a) Fiir alle z,y € X gilt d(z, A) < d(z,y) + d(y, A).
b) Die Funktion X — R;z — d(z, A) ist Lipschitz-stetig.
V. Archimedisches Prinzip

1. Zeige ausgehend vom Archimedischen Prinzip, d.h. Vz € R: dn € N: 2 < n, dass

1
Ve>0:IneN:0< — <e.
n



V1. Uberabzihlbarkeit

In dieser Aufgabe sei R definiert als eine Menge, die

e mindestens zwei Elemente enthalt,

e total geordnet ist, d.h. fiir jedes x € R gilt z < z, fiir z,y € R gilt immer z < y
oder y < zx, und falls beides gilt, folgt x = y, und fir x,y,z € R folgt aus z < y
und y < z, dass = < z,

e dicht geordnet ist, d. h. fiir z,y € R mit z < y gibt es stets ein z € R mit z < z < y,

e keine Liicken hat, d.h. wenn R = A U B, wobei A und B nicht-leere Mengen sind,
und Va € A,b € B : a < b, dann gibt es ein Element ¢ € R, sodass fiir jedes x € R :
(r<ec=x€A)AN(c<x= x € B). Dabei kann ¢ in A oder B liegen. Solch ein
Tupel (A, B) nennen wir einen Dedekind-Schnitt.

Hierin meint x < gy, dass £ < y und = # y, und , LI steht fiir die disjunkte Vereinigung.

1. Zeige, dass zwischen zwei verschiedenen z,y € R stets unendlich viele Elemente
von R liegen miissen.

Angenommen, (z1,z2,...) ist eine Folge in R, in welcher jedes Element von R vor-
kommt. Ohne Einschrankung sei 1 < xo. Wir definieren nun zwei Folgen (a1, ag,...)
und (by,be,...) mit a; = w1, by = xo. Weiter definieren wir a,y; = z; wobei i der
kleinste Index ist, der grofer ist als der zuvor fiir b, ausgewéhlte Index und fiir den
an < x; < by gilt. Aufserdem definieren wir b, 41 = x;, wobei ¢ der kleinste Index ist, der
grofser ist als der zuvor fiir a,+; ausgewdhlte Index und fiir den an4+1 < ; < by,.

2. Warum ist die Definition eines solchen a1 stets moglich und eindeutig?
3. Warum ist die Definition eines solchen b, stets moglich und eindeutig?
Welches Monotonieverhalten hat die Folge (ap)nen?
Welches Monotonieverhalten hat die Folge (by,)nen?

Zeige, dass (an)nen durch by beschriankt wird (von oben oder von unten?).

NS g e

Zeige, dass (by)nen durch a; beschréankt wird (von oben oder von unten?).
Wir definieren A== {z € R|Vn e N:z <b,} und B:=R\ A.

8. ZeigeVn € N:a, € ANb, € B.
A und B sind also nicht-leer.

1. Zeige Va € A,be B:a<b.

(A, B) ist also ein Dedekind-Schnitt und somit gibt es ein ¢ € R, fiir das insbesondere
Vn € N:a, < c < b, gilt. Es gibt nach Definition von (z,)nen €ein j € N, sodass ¢ = x;.

10. Zeige j > 2.

11. Begriinde, dass es einen kleinsten Index ¢ mit ¢ > j geben muss, fiir den x; in einer
der Folgen (ay,)nen oder (by)nen vorkommt.

12. Es sei m = min{n € N | ap+1 = z; V b1 = z;}. Leite damit einen Widerspruch
zur Wahl von ¢ her, indem du die Eigenschaften von z; und die Definition der
Folgen (an)nGNa (bn)neN nutzt.

13. Folgere, dass R {iberabzéhlbar ist.



VIl. Binomialkoeffizienten

1. Zeige fiir m,n € Ng mit n < m, dass

("= ")+ ()

2. Zeige fiir p € N prim und k € N mit k # p, dass p | ().
3. Zeige fiir n,m € N mit n > m, dass

> ()= (050)

=m

VIIl. Folgenkonvergenz

1. Es seien (ap)nen und (by)nen komplexwertige konvergente Folgen mit a,, — a und
b, — b. Zeige, dass dann a,, + b, — a +b.

2. Es sei (X,d) ein metrischer Raum. Zeige, dass jede konvergente Folge darin eine
Cauchy-Folge ist.

3. Bestimme den Grenzwert von

(G

4. Es sel (an)nen eine monoton wachsende Folge in R>g. Zeige, dass dann auch

(@%5)
an + 1 neN

monoton wachsend ist. Konvergiert diese Folge stets?

5. Es sel (25 )nen eine reellwertige Folge mit x, 11 — 2, — x € R. Zeige, dass dann

Tn
— = X.
n

6. Gebe ein Beispiel fiir eine Funktionenfolge (f,)neny mit f,: D — R fiir ein Intervall
D C R fiir alle n € N, die punktweise, aber nicht gleichméfig konvergiert.



. Untersuche, ob )

Reihenkonvergenz

4 2
. Untersuche, ob 300  3nA2n 45 o

n=1 2n64+3n3+n

o0 6 . 4l
n=1 92 16n=8 < 00 Falls ja, bestimme den Grenzwert.

Hinweis: Partialbruchzerlegung.

1
. Untersuche, ob >~ >° | (=1)"e" n? < oc0.

(%) Existiert limp oo 3 p_y 724727 Falls ja, bestimme den Grenzwert.
Hinweis: Finde eine Funktion, fiir die bei (dem Versuch) der Berechnung eines

dazugehorigen Integrals solch eine Reihe auftauchen kann.

. Esseie > 0.

a) Begriinde kurz
i 12() .y

z—00 efln(z) ylmo (es)y'

In(x) _

x€

b) Zeige damit limy_ oo

c) Zeige fiir alle n € N:

nQe—nE _ ,—nf(1-2 ln(n>)
d) Zeige damit lim,, o, n2e™™ = 0.
e) Zeige damit: AN e N:Vn > N : e < %
Hinweis: Wenn es hilft, bedenke, dass n?e™" = e

f) Zeige damit, dass

o0

€
E e < oo.
n=1

X. Stetigkeit und Differenzierbarkeit

1.

Es sei f: R — R stetig. Zeige, dass beschriankte Mengen von f auf beschrankte
Mengen abgebildet werden.

. Es seien a,b € R, a < b. Gilt die Aussage der vorherigen Aufgabe im Allgemeinen

auch fiir stetige f: (a,b) — R?

. Es sei I ein Intervall und f: I — R stetig. Zeige, dass f([) ein Intervall ist.

. Es seien (X, d) und (Y, d’) metrische Raume sowie f: X — Y eine Funktion. Zeige,

dass wenn fiir jede Folge (zy,)nen mit z, — p € X gilt, dass f(x,) — f(p), dann f
in p stetig ist.



XIl.

. Untersuche die Funktion

0, z<

1, z>n

f:@—m&;xH{

auf Stetigkeit.

. Zeige, dass f: R — R;z — e® + £2° 4+ 2® bijektiv ist. Bestimme (f~1)'(1).

Es sei f: R — R;z > 2% — 22. Zeige, dass ein = € (0,2) mit f'(x) = 0 existiert,
ohne die Ableitung von f zu bestimmen.

Es sei f: R — R eine in 0 differenzierbare Funktion mit f/(0) = 1. Bestimme

o J62) = f@)

z—0 T

(x) Es sei f: R — R differenzierbar, f(0) = 0 und |f'(z)| < |f(z)| fir alle z € R.
Zeige, dass dann f(z) = 0 fiir alle z € R.

Hinweis: Zeige, dass die Menge N der Nullstellen von f abgeschlossen und offen
ist. Zeige dafiir, dass sup{|f(z)| | z € (zo — 3,70 + 3} = O fiir 79 € N. Nutze
zuletzt, dass wenn A C R abgeschlossen und offen ist, dann A = () oder A = R sein
muss.

Integrale

. Bestimme

4
4o
——dzx.
/2 2 _8a2 "
3
/ xe?® dax.
)

1
/ cos(z) da?
0 i

. Bestimme

. Konvergiert das Integral

Weitere zu berechnende Integrale findet man zum Beispiel hier.

Quellen

Einige Aufgaben tropfen aus meinem Kopf, die Aufgaben zur vollstindigen Induktion
entstammen dem Handbook of Mathematical Induction — Theory And Applications von
D. S. Gunderson. Der Aufgabenblock zur Uberabzihlbarkeit hilt sich sehr dicht an ei-
nem Wikipediaartikel zu einem Beweis von Cantor. Das ist teilweise abgeschrieben. Die
Teilaufgaben zur letzten Aufgabe im Abschnitt zur Reihenkonvergenz halten sich an
eine Losung der letzten Teilaufgabe vom Mystery Customer, einige weitere Aufgaben
stammen aus seiner Fragensammlung. Andere Aufgaben entspringen ungesicherten Fels-
spalten. Bearbeitung auf eigene Gefahr!

Lernende mogen sich insbesondere darauf hingewiesen fiihlen, dass dieses Blatt nicht
einmal alle in der Vorlesung behandelten Themen streift. Das Analysis-ABC hilft viel-
leicht beim Aufspiiren der Liicken.
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