
Analysis 1 – Wiederholung
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Wintersemester 2024/2025

I. Mengenlehre und Logik

1. Beschreibe die Menge {x ∈ N | x ≤ 10 ∧ (2 | x ∨ 3 | x)} extensional.

2. Skizziere die Menge {z ∈ C | |z − 2− i| ≤ 2 ∨ (|z − 2| < |z − 4| ∧ |z − 2| < |z|)}.
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3. Es seien A = {1, 5, 7, 11, 13}, B = {1, 2, 3, 4, 5}, C = {⋆,△, ⋄}. Bestimme

a) A ∪B

b) A ∩B

c) A \B
d) (A ∩B)× C

e) A ∩ (B × C)



II. Vollständige Induktion

1. Es seien a, r ∈ R, a ̸= 0 und r ̸= 1. Zeige für jedes n ∈ N mit n ≥ 1, dass

a+ ar + ar2 + · · ·+ arn = a
rn+1 − 1

r − 1
.

2. Zeige für jedes n ∈ N mit n ≥ 1, dass

1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n−1.

3. Zeige für jedes n ∈ N mit n ≥ 3, dass

nn ≥ (n+ 1)!.

4. Zeige für jedes n ∈ N und für jedes x, y ∈ R≥0, dass gilt(
x+ y

2

)n

≤ xn + yn

2
.

5. (Bernoulliungleichung) Es sei x ∈ R \ {0} mit x > −1. Zeige per vollständiger
Induktion für jedes n ∈ N mit n ≥ 2:

(1 + x)n ≥ 1 + nx.

6. Es seien 1 ≤ a1 ≤ a2 ≤ · · · ≤ an natürliche Zahlen. Zeige, dass im Fall

1

a1
+

1

a2
+ · · ·+ 1

an
= 1

gilt, dass an < 2n!.

7. Zeige für beliebige natürliche Zahlen m,n ∈ N, dass
m∑
i=1

n∑
j=1

(i+ j) =
mn(m+ n+ 2)

2
.

kleiner Hinweis: Führe eine doppelte Induktion durch.

großer Hinweis: Es sei S(m,n) die zu zeigende Aussage für gewisse m,n ∈ N.
Zeige, dass S(1, 1) gilt. Zeige dann mit vollständiger Induktion, dass S(m, 1) für
alle m ∈ N gilt. Nutze dann für festes m0 ∈ N die nun gezeigte Aussage S(m0, 1)
als Induktionsanfang für eine vollständige Induktion über n, zeige also S(m0, n)⇝
S(m0, n+ 1).

8. (∗) Zeige, dass die Gleichung x4 + y4 = z2 keine Lösung (x, y, z) ∈ N3 hat.

Hinweis: Führe die Annahme, es gebe eine in z minimale Lösung, zum Widerspruch.



III. Komplexe Zahlen

Es seien z, w ∈ C.

1. Zeige |zw| = |z| · |w|.

2. Zeige zw = z · w

3. Zeige z ∈ R ⇐⇒ z = z.

4. Zeige Re(z) = z+z
2 .

5. Zeige Im(z) = z−z
2i .

6. Zeige z−1 = z
|z|2 .

7. Bestimme Re
(
3−i
2i

)
.

8. Bestimme alle Lösungen von z4 + 4z3 − 4z2 + 4z = 5 in den komplexen Zahlen.

IV. Metrische Räume

1. Es sei (X, d) ein metrischer Raum. Zeige, dass für alle x, y, z ∈ X gilt:

|d(x, y)− d(x, z)| ≤ d(y, z).

2. Es sei (X, d) ein metrischer Raum und d die diskrete Metrik, d. h.

d : X ×X → R; (x, y) 7→

{
1, x ̸= y

0, x = y
.

Es sei f : X → X eine Funktion. Zeige, dass f Lipschitz-stetig ist.

3. Es sei (X, d) ein metrischer Raum und A ⊆ X eine nicht-leere Menge. Wir definieren
für x ∈ X den Abstand von x zu A mittels

d(x,A) := inf{d(x, a) | a ∈ A}.

Zeige:

a) Für alle x, y ∈ X gilt d(x,A) ≤ d(x, y) + d(y,A).

b) Die Funktion X → R;x 7→ d(x,A) ist Lipschitz-stetig.

V. Archimedisches Prinzip

1. Zeige ausgehend vom Archimedischen Prinzip, d. h. ∀x ∈ R : ∃n ∈ N : x < n, dass

∀ε > 0 : ∃n ∈ N : 0 <
1

n
< ε.



VI. Überabzählbarkeit

In dieser Aufgabe sei R definiert als eine Menge, die

• mindestens zwei Elemente enthält,

• total geordnet ist, d. h. für jedes x ∈ R gilt x ≤ x, für x, y ∈ R gilt immer x ≤ y
oder y ≤ x, und falls beides gilt, folgt x = y, und für x, y, z ∈ R folgt aus x ≤ y
und y ≤ z, dass x ≤ z,

• dicht geordnet ist, d. h. für x, y ∈ R mit x < y gibt es stets ein z ∈ R mit x < z < y,

• keine Lücken hat, d. h. wenn R = A ⊔B, wobei A und B nicht-leere Mengen sind,
und ∀a ∈ A, b ∈ B : a ≤ b, dann gibt es ein Element c ∈ R, sodass für jedes x ∈ R :
(x < c ⇒ x ∈ A) ∧ (c < x ⇒ x ∈ B). Dabei kann c in A oder B liegen. Solch ein
Tupel (A,B) nennen wir einen Dedekind-Schnitt.

Hierin meint x < y, dass x ≤ y und x ̸= y, und „⊔“ steht für die disjunkte Vereinigung.

1. Zeige, dass zwischen zwei verschiedenen x, y ∈ R stets unendlich viele Elemente
von R liegen müssen.

Angenommen, (x1, x2, . . . ) ist eine Folge in R, in welcher jedes Element von R vor-
kommt. Ohne Einschränkung sei x1 < x2. Wir definieren nun zwei Folgen (a1, a2, . . . )
und (b1, b2, . . . ) mit a1 := x1, b1 := x2. Weiter definieren wir an+1 := xi wobei i der
kleinste Index ist, der größer ist als der zuvor für bn ausgewählte Index und für den
an < xi < bn gilt. Außerdem definieren wir bn+1 := xi, wobei i der kleinste Index ist, der
größer ist als der zuvor für an+1 ausgewählte Index und für den an+1 < xi < bn.

2. Warum ist die Definition eines solchen an+1 stets möglich und eindeutig?

3. Warum ist die Definition eines solchen bn+1 stets möglich und eindeutig?

4. Welches Monotonieverhalten hat die Folge (an)n∈N?

5. Welches Monotonieverhalten hat die Folge (bn)n∈N?

6. Zeige, dass (an)n∈N durch b1 beschränkt wird (von oben oder von unten?).

7. Zeige, dass (bn)n∈N durch a1 beschränkt wird (von oben oder von unten?).

Wir definieren A := {x ∈ R | ∀n ∈ N : x < bn} und B := R \A.

8. Zeige ∀n ∈ N : an ∈ A ∧ bn ∈ B.

A und B sind also nicht-leer.

1. Zeige ∀a ∈ A, b ∈ B : a < b.

(A,B) ist also ein Dedekind-Schnitt und somit gibt es ein c ∈ R, für das insbesondere
∀n ∈ N : an < c < bn gilt. Es gibt nach Definition von (xn)n∈N ein j ∈ N, sodass c = xj .

10. Zeige j > 2.

11. Begründe, dass es einen kleinsten Index i mit i > j geben muss, für den xi in einer
der Folgen (an)n∈N oder (bn)n∈N vorkommt.

12. Es sei m := min{n ∈ N | an+1 = xi ∨ bn+1 = xi}. Leite damit einen Widerspruch
zur Wahl von i her, indem du die Eigenschaften von xj und die Definition der
Folgen (an)n∈N, (bn)n∈N nutzt.

13. Folgere, dass R überabzählbar ist.



VII. Binomialkoeffizienten

1. Zeige für m,n ∈ N0 mit n ≤ m, dass(
m+ 1

n

)
=

(
m

n− 1

)
+

(
m

n

)
.

2. Zeige für p ∈ N prim und k ∈ N mit k ̸= p, dass p |
(
p
k

)
.

3. Zeige für n,m ∈ N mit n ≥ m, dass

n∑
i=m

(
i

m

)
=

(
n+ 1

m+ 1

)
.

VIII. Folgenkonvergenz

1. Es seien (an)n∈N und (bn)n∈N komplexwertige konvergente Folgen mit an → a und
bn → b. Zeige, dass dann an + bn → a+ b.

2. Es sei (X, d) ein metrischer Raum. Zeige, dass jede konvergente Folge darin eine
Cauchy-Folge ist.

3. Bestimme den Grenzwert von ((
1 +

−3

n2

)n)
n∈N

.

4. Es sei (an)n∈N eine monoton wachsende Folge in R≥0. Zeige, dass dann auch(
an

an + 1

)
n∈N

monoton wachsend ist. Konvergiert diese Folge stets?

5. Es sei (xn)n∈N eine reellwertige Folge mit xn+1 − xn → x ∈ R. Zeige, dass dann

xn
n

→ x.

6. Gebe ein Beispiel für eine Funktionenfolge (fn)n∈N mit fn : D → R für ein Intervall
D ⊆ R für alle n ∈ N, die punktweise, aber nicht gleichmäßig konvergiert.



IX. Reihenkonvergenz

1. Untersuche, ob
∑∞

n=1
3n4+2n2+5
2n6+3n3+n

< ∞.

2. Untersuche, ob
∑∞

n=1
6

9n2+6n−8
< ∞. Falls ja, bestimme den Grenzwert.

Hinweis: Partialbruchzerlegung.

3. Untersuche, ob
∑∞

n=1(−1)nen−
1
n2 < ∞.

4. (∗) Existiert limn→∞
∑n

k=1
n

n2+k2
? Falls ja, bestimme den Grenzwert.

Hinweis: Finde eine Funktion, für die bei (dem Versuch) der Berechnung eines
dazugehörigen Integrals solch eine Reihe auftauchen kann.

5. Es sei ε > 0.

a) Begründe kurz

lim
x→∞

ln(x)

eε ln(x)
= lim

y→∞

y

(eε)y
.

b) Zeige damit limx→∞
ln(x)
xε = 0.

c) Zeige für alle n ∈ N:
n2e−nε

= e−nε(1−2· ln(n)
nε ).

d) Zeige damit limn→∞ n2e−nε
= 0.

e) Zeige damit: ∃N ∈ N : ∀n ≥ N : e−nε ≤ 1
n2 .

Hinweis: Wenn es hilft, bedenke, dass n2e−nε
= e−nε

1/n2 .

f) Zeige damit, dass
∞∑
n=1

e−nε
< ∞.

X. Stetigkeit und Differenzierbarkeit

1. Es sei f : R → R stetig. Zeige, dass beschränkte Mengen von f auf beschränkte
Mengen abgebildet werden.

2. Es seien a, b ∈ R, a < b. Gilt die Aussage der vorherigen Aufgabe im Allgemeinen
auch für stetige f : (a, b) → R?

3. Es sei I ein Intervall und f : I → R stetig. Zeige, dass f(I) ein Intervall ist.

4. Es seien (X, d) und (Y, d′) metrische Räume sowie f : X → Y eine Funktion. Zeige,
dass wenn für jede Folge (xn)n∈N mit xn → p ∈ X gilt, dass f(xn) → f(p), dann f
in p stetig ist.



5. Untersuche die Funktion

f : Q → R;x 7→

{
0, x ≤ π

1, x > π

auf Stetigkeit.

6. Zeige, dass f : R → R;x 7→ ex + 1
5x

5 + x3 bijektiv ist. Bestimme (f−1)′(1).

7. Es sei f : R → R;x 7→ x2 − 2x. Zeige, dass ein x ∈ (0, 2) mit f ′(x) = 0 existiert,
ohne die Ableitung von f zu bestimmen.

8. Es sei f : R → R eine in 0 differenzierbare Funktion mit f ′(0) = 1. Bestimme

lim
x→0

f(3x)− f(x)

x
.

9. (∗) Es sei f : R → R differenzierbar, f(0) = 0 und |f ′(x)| ≤ |f(x)| für alle x ∈ R.
Zeige, dass dann f(x) = 0 für alle x ∈ R.

Hinweis: Zeige, dass die Menge N der Nullstellen von f abgeschlossen und offen
ist. Zeige dafür, dass sup{|f(x)| | x ∈ (x0 − 1

2 , x0 + 1
2} = 0 für x0 ∈ N . Nutze

zuletzt, dass wenn A ⊆ R abgeschlossen und offen ist, dann A = ∅ oder A = R sein
muss.

XI. Integrale

1. Bestimme ∫ 4

2

4x

2− 8x2
dx.

2. Bestimme ∫ 3

−2
xe2x dx.

3. Konvergiert das Integral ∫ 1

0

cos(x)

x
dx?

Weitere zu berechnende Integrale findet man zum Beispiel hier.

Quellen

Einige Aufgaben tropfen aus meinem Kopf, die Aufgaben zur vollständigen Induktion
entstammen dem Handbook of Mathematical Induction – Theory And Applications von
D. S. Gunderson. Der Aufgabenblock zur Überabzählbarkeit hält sich sehr dicht an ei-
nem Wikipediaartikel zu einem Beweis von Cantor. Das ist teilweise abgeschrieben. Die
Teilaufgaben zur letzten Aufgabe im Abschnitt zur Reihenkonvergenz halten sich an
eine Lösung der letzten Teilaufgabe vom Mystery Customer, einige weitere Aufgaben
stammen aus seiner Fragensammlung. Andere Aufgaben entspringen ungesicherten Fels-
spalten. Bearbeitung auf eigene Gefahr!

Lernende mögen sich insbesondere darauf hingewiesen fühlen, dass dieses Blatt nicht
einmal alle in der Vorlesung behandelten Themen streift. Das Analysis-ABC hilft viel-
leicht beim Aufspüren der Lücken.
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